
28 The Delphi Magazine Issue 69

Simple Scene Graph Management
And 3D Rendering With OpenGL
by George Black

Opportunities exist for Delphi
developers to produce a huge

range of applications based on 3D
rendering technology. What fol-
lows is an explanation of scene
graph management and the
OpenGL rendering engine, an
understanding of which is essen-
tial in order to create your own 3D
rendering applications.

Today, computer generated 3D
rendered photo-realistic images
are all around us. From computer
generated animation films, com-
puter augmented feature films,
advertisements and weather maps
on the nightly news to pictures in
magazines, posters and the
internet. Complex information can
be visualized and more readily
understood using sophisticated
volumetric rendering techniques.
For example, doctors can view the
MRI scans of patients to assist in
diagnosis, scientists can educate
and demonstrate complex con-
cepts using smart 3D graphics,
engineers can model complex

problems without the cost of
mockups or prototypes. A 3D com-
puter game is not cool unless it
sports realistic and fast 3D render-
ing. The core of all these applica-
tions is the scene graph
management, the rendering engine
and the hardware.

Scene graph management is a
well developed and understood
technology (see the references at
the end of this article) which can
be easily and effectively applied in
the Delphi and object oriented pro-
gramming environment. Microsoft
provides the OpenGL and DirectX
3D rendering engines as standard
with 32-bit Windows versions, that
can be accessed directly from
Delphi. These days a Windows
system can easily have the ‘grunt’
to match what was, in the past, the
realm of the graphics workstation.
Plenty of graphics card manufac-
tures will accelerate the perfor-
mance of the OpenGL and DirectX
rendering engines, via hardware,
to startling levels. Delphi develop-
ers, therefore, now have the same
opportunity to provide RAD for 3D

rendering applications as with
other more traditional areas. Kylix
will also provide the same oppor-
tunities in the Linux environment.

This article will demonstrate the
basic principles of scene manage-
ment using some simple 3D
objects to create a robot-shaped
figure.

A scene graph is composed of a
hierarchy of 3D objects that is
induced by a bottom-up construc-
tion process. Simple 3D objects are
used as building blocks to create
higher-level 3D objects, with those
creating higher-level objects, and
so on. If each 3D object is used only
once, then the scene graph can be
constructed as a tree, with the 3D
objects as nodes and the inclusion
relationships as the connections.
The structure is a directed acyclic
graph. The scene graph structure
is used directly for the rendering of
the 3D objects. Using appropriate
techniques, efficient scene graph
traversal during the rendering
process will optimize the speed of
rendering while keeping the
structure of the 3D objects simple.

Efficient scene management also
requires the efficient culling of 3D
objects not currently in view and
the selection of 3D objects using
the traditional selection tech-
niques with the mouse cursor.
Techniques for achieving 3D
object view culling and user selec-
tion of 3D objects are discussed in
this article along with
demonstrations.

Also included are the basics for
creating a rendering window using
the OpenGL API to display the 3D
scene graph. Working sample
code, based on Delphi 5, to create a
basic OpenGL window control
along with a demonstration scene
graph is included and discussed
throughout the article. Refer to
Figure 1 for a screenshot of the
demonstration application.

➤ Figure 1

May 2001 The Delphi Magazine 29

It is assumed the reader has
some understanding of 3D graph-
ics. Excellent texts exist for an
introduction of this topic (see Ref-
erences for examples). This article
aims to provide the reader with
information to enable 3D rendering
and scene graph management to
be performed from within the
Delphi environment.

OpenGL Rendering Basics
Page 2 of the OpenGL Programming
Guide says ‘OpenGL is a software
interface to the graphics hardware.
This interface consists of about
250 distinct commands that you
use to specify the 3D objects and
operations needed to produce
interactive three-dimensional app-
lications.’ An excellent reference
to the OpenGL command set and
the implementation of OpenGL in
the Microsoft Windows environ-
ment is the OpenGL Super Bible
(see References).

The OpenGL API is command-
driven rather than COM-driven
(like DirectX 3D). The core OpenGL
functionality is provided by Win-
dows within OpenGL32.DLL. A
Delphi prototypes unit was sup-
plied with Delphi 3. However, an
improved and updated prototypes
unit, OpenGL12.PAS, is at

www.delphi-jedi.org/
DelphiGraphics/jedi-index.htm

and is included on this month’s
disk. As the OpenGL engine is
platform-independent, the vendor
(Microsoft in our case) must
supply interface code into the
specific ‘windowing’ system used.
Microsoft has supplied these com-
mands and the prototypes can be
found in the Windows.PAS unit.

OpenGL commands are prefaced
with gl. OpenGL utility commands
are prefaced with glu. Windows-
specific implementation com-
mands are usually prefaced with
wgl.

The Demonstration Code
Included with this article is a
simple demonstration of the topics
discussed. Two classes have been
created which will do the work.
The first is called TBasicOpenGL and

is a descendant of the TWinControl.
This class will take care of the
OpenGL session details and will be
the viewing window for the
OpenGL session.

The second class is called
TOpenGLObject and descends from a
TObject. This class is the core to
the scene graph implementation
and will also be responsible for the
final rendering of the 3D object into
the OpenGL window.

Both classes and some support
definitions are found in the
BasicOpenGL.pas unit.

Set Up The OpenGL Window
An OpenGL session requires a Win-
dows handle and device context to
associate with. TBasicOpenGL is a
new class descended from the
TWinControl, as the handle is made
available within this class. This
class also implements the basic
mouse feedback that will be impor-
tant in the user interaction with the
objects.

The implementation of the
OpenGL session through the
TBasicOpenGL class has been kept
simple for readability: the supplied
code would not be suitable for a
working application.

To initialize an OpenGL session a
number of steps need to be carried
out. Once the OpenGL session is
running and active, then any
OpenGL commands will be
directed to this session and car-
ried out. The majority of this is in
the GLStartUp call and in the spe-
cific call CreateRenderingContext
found in the OpenGL12.PAS unit.

The sequence of creation is as
follows:

Create a window handle. The
TWinControl takes care of this. The
HandleAllocated and Handle-
Required methods provide the
standard mechanism for ensuring
a handle is available when
required.

Create a device context. A Win-
dows device context is created and
held for the life of the window. The
GetDC Windows API call provides
the device context and is called
within the GLStartup method.

Set the pixel format for the
window. A valid pixel format is
selected which will support the

OpenGL session requested. Gen-
erally a set of values are requested
and the pixel format which best fits
the request will be supplied. If
hardware acceleration is present,
this will be selected in favor of the
software only mode. If you want to
know more about pixel formats,
refer to Microsoft’s documenta-
tion and the OpenGL Super Bible.
You can only set the pixel format
once for any given window handle.

Create a rendering context. The
rendering context is a value of
pre-defined type HGLRC that will
associate the OpenGL session data
with a device context and pixel
format. Only one rendering con-
text can be active per thread. A
rendering context can be associ-
ated with a number of device con-
texts as long as each window
format, pixel format and device
context are exactly the same.

Activate the rendering context.
Once activated, the rendering con-
text will receive all OpenGL com-
mands. Hence the reason for one
rendering context active per
thread. OpenGL does support
multi threading. Each thread can
have one active rendering context.
We must initialize the state of the
OpenGL session associated with
the rendering context. The
OpenGL implementation is a state
machine, which will maintain the
current state until changed.

To initialize and manage the
OpenGL session in the TBasic
OpenGL six of the TWinControl’s
calls are overridden. Refer to the
source code for listings of these
modifications.

Rendering A Window
The functionality to render in the
window requires some startup and
shut-down. Some of this can be
done once-per-session, or only
when the window is resized or
moved, but for readability of the
demonstration code this function-
ality is included in the Render-
Window call. Refer to Listing 1 for a
listing of the code.

Rendering of the window will be
triggered by the WMPaint message.
All the standard TWinControl paint
functionality is ignored with the
RenderWindow method doing all the

30 The Delphi Magazine Issue 69

work including clearing the
window. The rendering process
will call the DoRender of the Root
Object which is the root of the
scene graph, if one has been
assigned.

The setup of the render requires
the initialization of the three trans-
formation matrices involved in
data transfer through the OpenGL
graphics pipeline. The matrices
are the ModelView matrix, the Pro-
jection matrix and the ViewPort
matrix. Transformation matrices
provide the mechanism for projec-
tion of 3D points onto a 2D screen
or window. 3D objects can be made
to appear to rotate, move and scale
simply by adjusting the appropri-
ate matrix. The ModelView is pri-
mary to this function and converts
3D coordinates into eye relative
coordinates. This matrix is usually
the default for the OpenGL session
and will be manipulated often by
every 3D object being rendered.
The Projection matrix establishes
the viewing volume against which
3D objects will be clipped and
sized. The Projection matrix will
not change unless the view volume
is altered, for example, the viewer
wants to zoom in. The ViewPort
scales the final output into window
coordinates. The ViewPort matrix
will only change if the window is
resized or moved.

Retained Mode (Scene
Graphs) And Immediate Mode
There are two approaches to pro-
gramming for 3D graphics. The
first is called retained mode.

With retained mode you provide
the API with a description of your
objects and the scene and the API
will create the screen image for
you.

The second approach is called
immediate mode. With immediate
mode you will issue low level

rendering commands to produce
the screen image. These modes
could be likened to working with
Delphi. Dropping buttons onto a
form is similar to retained mode
action where drawing lines on a
Tcanvas is immediate mode. Most
retained mode APIs use an immedi-
ate mode internally to finally create
the image.

OpenGL is an immediate mode
API. As there is no supplied
retained mode structure with
OpenGL we will need to build one.
‘Wait!’, I hear you cry. ‘Doesn’t
DirectX3D have a retained and
immediate mode?’ Yes, but not as
defined above. Microsoft and Sili-
con Graphics (the creators of
OpenGL) were working on a joint
retained mode API (Fahrenheit
Scene Graph) but I believe this
project has folded.

Retained mode or scene graphs,
as I will now call the approach, pro-
vide the essential mechanism for
managing our 3D data in an orderly
fashion, provides the framework
for user interaction and, possibly
more importantly, the potential for
performance optimization.

Scene Graph Structure
As mentioned earlier, a scene
graph can be constructed as a tree
with the objects as nodes. It
seemed logical that the TTreeNode
should be used as the basic build-
ing block for the scene graph and
that a new class should descend
from this with the added function-
ality. However, the TTreeNodes

class does not support the exten-
sion of the TTreeNode class as you
can add only TTreeNode instances
to the TTreeNodes structure. A
TTreeView has been linked in to
display the scene graph tree
structure only.

The basic building block for a
scene graph is the one-to-many
management of the parent and
children objects. A TList is used to
hold the children while a
ParentObject pointer holds the
pointer back to the parent for each
child. The ‘root object’ will have a
nil parent. It is assumed that each
parent owns the children and will
be responsible for freeing the
instances.

ChildCount and Child[index]
properties can be used to access
the child fields of a node.
Recursive calls have been used to
implement most of the
functionality.

For example, when a 3D object is
selected (or de-selected) all chil-
dren will also be selected (or
de-selected). The Selected prop-
erty is implemented with a write
method called SetSelected (refer
to Listing 2 for the code listing).
The method will call all children
and set their values via their
Selected property and will do so
recursively all the way down the
tree.

The demonstration program
builds a 3D object hierarchy
comprising a root object, which is
shaped after a robot. The robot is
composed of a body, head, arms,
legs and feet. Simple shapes are
used for the construction and
include solid cubes (green), cylin-
ders (blue) and spheres (red). All

procedure TBasicOpenGL.RenderWindow;
begin
ClearWindow; //clear the window and fill with black pixels
If Height=0 then exit; //exit if too small
glViewport(0,0,width,height); //set the viewport size
glMatrixMode(GL_PROJECTION); //switch to Projection Matrix
glLoadIdentity; //fill matrix with unity matrix
gluperspective(fViewAngle,width/height,1,500); //set perspective view
glMatrixMode(GL_MODELVIEW); //switch to ModelView matrix
glLoadIdentity; //fill matrix with unity matrix
glTranslatef(-9,-5,-50); //move the viewer to sensible view point
If fRootObject<>Nil then

fRootObject.DoRender; //allow the Root Object to render items
glFlush; //flush the GL pipeline
SwapBuffers(fRenderDC); //swap the buffers to make it appear

end;

➤ Listing 1: The RenderWindow
method.

procedure TOpenGLObject.SetSelected(const Value: Boolean);
Var i:Integer;

begin
//selection is passed down the tree
FSelected := Value;
If ChildCount>0 then

for i:=0 to ChildCount-1 do
Child[i].Selected:= FSelected;

end;

➤ Listing 2: The SetSelected
method.

32 The Delphi Magazine Issue 69

these shapes are part of the sup-
plied Delphi OpenGL Utility
Library (refer to dglut.pas in the
supplied source code). The head,
arms, legs and feet are built as chil-
dren of the body. The feet are built
as children of the legs. The owner-
ship concept means that if the leg
is selected then so is the attached
foot. However, if the foot is
selected, the owning leg will not be
selected.

The ownership concept flows
onto 3D object action. If the leg
were moved when it were selected
then the leg would also move the
foot. The inherent structure of the
objects and the rendering process
means that this will all happen
automatically.

The parts of the robot can be
user-selected via the screen view
or the tree view, using the mouse.

The key method for the 3D
objects is the rendering method in
which each 3D object will render
itself and, if required, pass the
method along to the children.

The DoRender method shown in
Listing 3 follows these steps:

Firstly, if the 3D object is flagged
as ‘culled’ then exit. Next, save the
current ModelView matrix as this
must be restored when finished.
OpenGL provides a matrix stack
and the calls to push and pop
matrices. When pushing onto the
stack a copy of the current matrix
is left behind. Then carry out any
3D object-related translations,
rotations and scaling. The 3D
objects are only translated in this
demonstration. The sphere 3D
objects are translated along the X
axis. The cube 3D objects will be
translated by their owning sphere
along the X axis and will translate
them selves along the Y axis (in
OpenGL the Y axis is always up the
screen). Matrix manipulations are
the recommended way of modify-
ing the position, size and rotation
of 3D objects within the scene
graph. Next, push the name
(instance pointer in this case) onto
the OpenGL name stack. The stack
is used during 3D object culling
and selection and will be discussed
a little later. Now render the 3D
object using the DoRender method.
3D objects can be modified via

polymorphism to create new basic
units. If selected, draw a selection
bounding box to indicate the
object’s selection state. Pop the
name back off the name stack. Pass
the DoRender call to the children.
Finally, restore the ModelView
matrix.

View Culling The Scene
View culling is the technique to
optimize the rendering process by
only rendering 3D objects that
appear in the current view. If the
3D object is behind the viewer or
out of the field of view then there is
no point in carrying out the render-
ing operations that are costly in
CPU cycles and which will eventu-
ally discard the 3D object’s
primitives.

A number of methods exist for
the predictive culling of 3D objects
and the detail can become very
complex (refer to Computer Graph-
ics: Principles and Practice, in the
References section). However, I
have found that I can use the
OpenGL engine directly to tag 3D
objects that do not appear in the
view. Please note this is not
the preferred method of scene
graph culling, but does serve to
demonstrate the principles for this
article.

The culling is only required if the
view changes or the 3D objects
change in shape or position. Thus
the culling routine can be triggered
post one of these modifications.
Then whenever the scene is
rendered it will do so with only
those 3D objects within the view.
This method of view culling does
require one rendering cycle, albeit
that the complete OpenGL
pipeline is not used, and so should
be used only as required.

The key to view culling (and
selecting 3D objects) is the capa-
bility of the OpenGL engine to be
set to a selection state. In this
state, OpenGL will not directly
render to the window buffers but
will instead create lists of hit
records representing 3D objects
which have identified themselves
during the rendering and produce
valid and seen rendering primi-
tives.

The OpenGL engine will return a
list of hit records. The structure is
basically an array of integers in
which ‘n’ hits have been recorded.
Each hit is composed of the
following:

➤ Listing 3: The DoRender
method of the TOpenGL
Object class.

procedure TOpenGLObject.DoRender;
Var i:Integer;

begin
If FViewCulled then exit; // no need to render further
glPushMatrix; //copy current matrix
glTranslated(fTranslation.X,fTranslation.Y, fTranslation.Z);
glRotated(fRotation.X,1,0,0);
glRotated(fRotation.Y,0,1,0);
glRotated(fRotation.Z,0,0,1);
glPushMatrix; //copy current matrix
glScaled(fScale.X,fScale.Y,fScale.Z);//only scale the local object
glPushName(Integer(self)); //push Self as Object name/locator
Case fMode of
1: Begin

glColor3fv(@glRed);
glutSolidSphere(0.5,20,20); //render as a sphere

end;
2: Begin

glColor3fv(@glGreen);
glutSolidCube(1); //render as a cube

end;
3: Begin

glColor3fv(@glBlue);
glutSolidCylinder(0.5,1,10,10); //render as a cylinder

end;
end; //case
if FSelected then begin
// if the object tagged as selected then draw a bounding box
glColor3fv(@glGray);
glutWireCube(1.2);

end;
glPopName; //pop name back of name stack
glPopMatrix; //restore the original matrix
If FChildrenList.Count>0 then begin
//if child count>0 then render the children
For i:=0 to FChildrenList.count-1 do
Child[i].DoRender; //recursive call down the tree

end;
glPopMatrix; //restore the original matrix end;
glPopMatrix; //restore the original matrix

end;

34 The Delphi Magazine Issue 69

➢ The number of names on the
stack at the time of the hit. In
this example it will always be 1.

➢ The Minimum Z depth of the 3D
objects in the hit. In this exam-
ple this value is ignored but
could be used to sort objects in
distance from the viewer.

➢ The Maximum Z depth of the 3D
objects in the hit. In this exam-
ple this value is ignored.

➢ The name/s of the 3D objects. In
this example there will only be
one name, which will be the
pointer to the instance that
created the hit.

3D object culling (and 3D object
selection) is carried out in the
GetSelectList method, which is
shown in Listing 4. To handle both
view culling and 3D object selec-
tion, pass in a SelectMode to
separate the approaches. Selec-
tion of 3D objects is covered in the
next section.

The GetSelectList method
shown in Listing 4 follows the
following logic:

Firstly, provide the OpenGL
engine with a suitably sized buffer
to store the hit data. Next, set the
OpenGL render state to GL_SELECT,
initialize the OpenGL name stack
and push a dummy zero name. Set
all 3D objects cull =False so they
will then render into the scene.
Now set the OpenGL engine to
GL_RENDER state and OpenGL will
return the number of hits and the
hit data. Set all 3D objects to cull
=True to cull the complete scene.
Finally, process the hit data, utilis-
ing the ‘name’ which is the pointer
to the 3D object to set the cull flag
to individually set the cull flag to
false and turn on only those
objects seen.

The current ModelView, Projec-
tion and ViewPort matrices, repre-
senting the current view, are used
for this approach, and thus any 3D
object which appears in the view
will generate a hit record.

OpenGL provides a name stack
for identifying 3D objects. The
name is user supplied and of type
Integer. Use the pointer to the 3D
object instance as the name, as
this provides an easy path

back to the 3D object itself.
OpenGL also provides a name
stack onto which the full 3D object
hierarchy can be pushed. As this is
cumbersome, this demonstration
will always push the object name,
render the 3D object and then pop
the name again before, rendering
any owned children. The hits
records will then contain records
of the individual 3D objects that
are seen (or selected).

The demonstration program
highlights this technique. When
run, all the robot’s parts will be dis-
played in the view. If the view is
zoomed in, using the Zoom In
button, those parts that fall out-
side the view will gradually be
culled. The tree view will also be
updated to show those parts
currently not in the view. Zooming
back out, using the Zoom Out
button, will bring the parts back
into the rendering hierarchy. As
the 3D object count is small, it is
unlikely that you will notice any
improvement in rendering time,
but as the number of 3D objects
grows this efficiency improvement
will become observable.

procedure TBasicOpenGL.GetSelectList(X, Y: Integer;
SelectMode: TSelectMode);
Var
SelectArray : Array[0..256] of TGLuint;
Hits : Integer;
fviewport : TVector4i;
Procedure ProcessHits;
Var
I,ArrayCount:Integer;
aPtr:Pointer;

Procedure ProcessHit;
Var HitCount,I:Integer;
Begin
HitCount:=SelectArray[ArrayCount];
Inc(ArrayCount);
If HitCount=0 then exit;
Inc(ArrayCount);//Z value min
Inc(ArrayCount);//Z Value Max
For i:=1 to HitCount do begin
aPtr:=Ptr(SelectArray[ArrayCount]);
Inc(ArrayCount);
If (aPtr<>Nil) and

(TObject(aPtr) is TOpenGLObject) then
Case SelectMode of
tsMouseSelect: TOpenGLObject(
aPtr).Selected:=True;

tsWindowCull : TOpenGLObject(
aPtr).ViewCulled:=False;

end;//case
end;//hitcount loop

end;
Begin
ArrayCount:=0;
For i:=1 to Hits do
//step through the hits and process records
ProcessHit;

end;
begin
If height<=0 then exit;
Hits:=0 ;
//set up the hit record data array
FillChar (SelectArray[0],SizeOf(SelectArray),0);
glSelectBuffer(256,@SelectArray[0]);
//set to GLSelect mode
glRenderMode(GL_Select);
//if selecting under mouse build special Projection Matrix
If (SelectMode= tsMouseSelect) then begin
//setup the size of the current viewport

fviewport[0]:=0;
fviewport[1]:=0;
fviewport[2]:=Width;
fviewport[3]:=Height;
//set up the projection matrix
glMatrixMode(GL_PROJECTION);
glPushMatrix;
glLoadIdentity;
gluPickMatrix(X, Height-Y, 20, 20, fViewPort);
gluperspective(fViewAngle,width/height,1,500)

end;
//initialize glNaming functionality
glInitNames;
glLoadName(0);
//reset to ModelView
glMatrixMode(GL_MODELVIEW);
//If culling then cull ALL objects
If SelectMode=tsWindowCull then
If fRootObject<>Nil then
fRootObject.CullAllObjects(false);

//render scene into select pipeline
If fRootObject<>Nil then
fRootObject.DoRender;

//get the hits data
Hits:= glRenderMode(GL_Render);
//tidy up
If (SelectMode= tsMouseSelect) then begin
glMatrixMode(GL_PROJECTION);
glPopMatrix;
glMatrixMode(GL_MODELVIEW);

end;
If SelectMode=tsMouseSelect then
If FRootObject<>Nil then
FRootObject.Selected:=False;

//If found objects then process hits
If Hits>0 then begin
If SelectMode=tsWindowCull then
If fRootObject<>Nil then
fRootObject.CullAllObjects(True);

ProcessHits;
end;
//update the tree view if required
If Assigned(FOnUpdateTreeView) then
FOnUpdateTreeView;

//invalidate the view to trgger a repaint.
Invalidate;

end;

➤ Listing 4: GetSelectList
method.

May 2001 The Delphi Magazine 35

Selecting 3D Objects
The selection of 3D objects cur-
rently under the cursor follows the
same logic as the scene culling.
However, to find only those 3D
objects that are under the cursor,
we must modify the Projection
matrix to represent a small view
space under the cursor. OpenGL
utility library provides a method
for setting this up given the current
mouse position as supplied by the
MouseUp event and the logic is as fol-
lows:

Firstly, save the current projec-
tion matrix. Next, load the identity
matrix (a do-nothing matrix). Using
the current mouse position,
required size and window dimen-
sions, create the pick matrix using
the gluPickMatrix call. In the dem-
onstration the mouse pick is set at
10 pixels by 10 pixels around the
hot spot of the cursor. Finally, load
the perspective settings.

By reducing the size of the view-
ing area to a frustrum (or truncated
prism) sitting under the mouse, the
selection system will now return a
list of 3D objects currently under
the mouse. Simply set the selected
flag for those found. This selection
process is relatively fast, and can
be done for mouse moves thus
allowing for the identification of
which 3D object the mouse is cur-
rently rolling over. Obviously
objects culled out of the view need
not be considered for selection by
the mouse.

The hit record data generated
during the GetSelectedList
method also contains information

about how far the 3D object is away
from the viewer, the Z depth. This
can be useful in deciding which 3D
object is closer to the user and
thus more likely the one the user
wishes to select.

Conclusion
Delphi developers have all the
tools to build 3D rendering applica-
tions. OpenGL and DirectX hard-
ware support is fast becoming the
norm because of the extensive
game support. The basics of a
scene graph will allow fast and flex-
ible management of 3D objects
with which to build and maintain
3D capable applications.

I have been asked ‘so what can I
do with all this?’ I have spent a
number of years producing appli-
cations that convert 3-dimensional
data into manageable 3D objects.

People can appreciate a 3D ren-
dered view of their new home
much better than a set of 2D plans.
This logic applies to other fields.
Where the traditional 2D represen-
tation fails to convey the full pic-
ture a 3D representation, with
suitable viewer manipulation, may
do the job. Schematics and flow
charts may benefit from the addi-
tion of the 3rd dimension. Tree
views could be developed in 3D.
Buttons and switches can be devel-
oped in 3D and the user provided
with a 3D desktop.

Haptik devices and stereo vision
are both maturing technologies
which in the not to distant future
will provide PC users with a true
3D work space with which virtual
3D objects can be manipulated: for
examples, have a look at

www.cmis.csiro.au/imvs/
level2/imvsimages.htm

George Black has spent the last 7
years developing specialist com-
puter aided design, visualisation
and rendering based applications
for the PC using Delphi. He is cur-
rently employed by Datavis
(www.datavis.com.au) where he
has developed 3DShapes Toolkit,
a set of native Delphi components
providing 3D scene management
and rendering. He can be reached
at georgeb@datavis.com.au

Previous Articles
The OpenGL rendering API has been covered in The Delphi Magazine in the past.
John Hutchings (Issue 42, February 1999) wrote an article covering some of the
basics of establishing an OpenGL session and basic rendering at the immediate
mode level. He outlined a set of basic components for interacting with OpenGL
API. Ian Ringrose and Joseph Steel (Issue 34, April 1998) describe a retained mode
(scene graph) component set that uses the VRML/Open Inventor style scene struc-
ture. They provide no detail of the scene graph implementation in the article. An
earlier article by Dave Jewell (Issue 28, December 1997) was an introduction to the
API. Interestingly his views of the future of OpenGL versus DirectX3D were partly
correct. Hardware has developed in both processor speed and graphics capability
to lower the cost of achieving acceptable 3D rendering performance of the 3D
APIs. However, his prediction of a single API winner has not proved correct. Both
APIs are still with us and strongly supported by graphics card and game manufac-
turers. Microsoft appears to be reluctantly supporting OpenGL (surprise, surprise)
and has yet to move to the current OpenGL standard release of 1.2. With the
growing interest in Linux and now having Kylix with us, there may be a strength-
ening in interest in OpenGL because of the cross-platform capability of the API.

References
JD Foley, A van Dam, SK Feiner, and JF Hughes (1990) Computer Graphics: Principles
and Practice 2nd Edn. Addison-Wesley: Massachusetts.

W Schroeder, K Martin, and B Lorensen (1997) The Visualisation Toolkik 2nd Edn.
Prentice-Hall: New Jersey.

M Woo, J Neider, T Davis, and D Shreiner (1997) OpenGL Programming Guide 3rd Edn.
Addison-Wesley: Massachusetts.

J Wernecke, (1994) The Inventor Mentor Addison-Wesley: Massachusetts.

RS Wright and M Sweet (1999) OpenGL Super Bible 2nd Edn. Waite Group:
Indianapolis.

Included Third Party Code
OpenGL12.pas. The OpenGL prototypes and some helper routines. Mike Lischke from
the Delph-Jedi website.

Geometry.pas. Basic 3D geometry routines and data structures. Mike Lischke from the
Delph-Jedi website.

DGLUT.pas. DGLUT is an Object Pascal translation of a small part of Mark Kilgard’s
GLUT library for OpenGL. Bob Crawford.

	OpenGL Rendering Basics
	The Demonstration Code
	Set Up The OpenGL Window
	Rendering A Window
	Retained Mode (Scene Graphs) And Immediate Mode
	Scene Graph Structure
	View Culling The Scene
	Selecting 3D Objects
	Previous Articles
	Conclusion
	References
	Included Third Party Code

